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Introduction 

Early onset Prostate Cancer (PCa) patients’ incidence 
has increased sharply in the last two decades. The molecular 
biology of these tumors differs from the late onset presentation 
in terms of aggressiveness [1]. In this regard, the diagnosis of 
PCa at a young age is often an indication of more aggressive or 
fast-growing tumors. Patients diagnosed with early onset PCa 
have an increased risk of prostate cancer-specifi c mortality 

(PCSM) [2]. Most interestingly, the risk may be attributable 
to clinically signifi cant tumors in patients diagnosed with 
high-risk and metastatic disease. Despite efforts to improve 
screening strategies, these patients are more likely to die from 
their cancers compared to those diagnosed later in life [3].

PCa can be further divided into early and late-onset, with 
men diagnosed at age 55 years or younger considered to be 
early-onset, making up over 10% of new diagnoses in 2012 
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[3]. Several theories have been proposed for the increasing 
incidence of early-onset PCa, essentially PSA screening in 
men under age 55, increased HPV prevalence, and exposure to 
environmental carcinogens. Additional factors involved include 
racial, ethnic, familial, and genetic factors [4].

In recent years, Next-Generation Sequencing (NGS) 
technologies have revolutionized cancer genomics research, 
providing a comprehensive view of genomic alterations 
associated with cancer development and progression [5]. 
Somatic testing may be performed to identify whether 
the tumor has actionable targets [6]. These fi ndings can 
ultimately provide the clarity needed to best direct the clinical 
management for these patients and providers [7]. 

Despite the high incidence of PCa, the treatment options are 
limited. Therefore, NGS is gaining weight as a pharmacological 
target [8]. Several studies have reported its use to identify 
genetic alterations in prostate cancer, including somatic 
mutations in tumor suppressor genes such as TP53, PTEN 
and RB1, as well as alterations in androgen receptor signaling 
pathway genes such as AR and FOXA1 [9].

To our knowledge, no studies have compared molecular 
phenotypes of early versus late onset PCa. The article aims to 
use the international clinic-genomic data-sharing consortium 
from the Genomics Evidence Neoplasia Information Exchange 
(GENIE) to characterize somatic genetic profi les between 
patients with early and late-onset PCa and potential treatment. 

Methods

Data source and study population 

The American Association for Cancer Research Project 
GENIE registry contains sequencing data for more than 
121,000 patients with cancer. Data is derived from 19 of the 
leading cancer centers around the world. GENIE importantly 
aggregates NGS data with patient demographics data and 
clinical outcomes. The study was exempted by our institutional 
review board because the data contained de-identifi ed patient 
information. Patients were excluded with prostate small cell 
carcinoma (55 cases), prostate neuroendocrine carcinoma (53 
cases), or prostate squamous cell carcinoma (2 cases). Patients 
with missing ages were removed (52 cases). A total of 4,546 
Patients and 5,740 samples were included with pathologically 
confi rmed prostate adenocarcinoma. The data is derived from 
19 cancer centers from 2012 to 2021. This study adhered to 
the Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) reporting guideline. 

Variables 

Patient demographic data included age at the time of 
diagnosis (in years), race (White, Black, Asian/Pacifi c Islander, 
Other, or Unknown), and Ethnicity (non-Spanish/non-
Hispanic or Spanish/Hispanic). Patient clinical data included 
sample type (Primary Tumor, Metastasis, and Unknown) and 
the sequencing center. 

Somatic gene mutation endpoints 

The somatic gene mutations are derived from clinical-
grade, NGS data from specimens obtained during routine 
patient care. Somatic mutations with a frequency among more 
than 2% of patients and with a minimum of 20 samples were 
included as a cutoff point for inclusion criteria. The primary 
endpoint in our study is the differential expression of somatic 
gene mutations. 

Statistical analysis 

Patients were dichotomized into early-onset (< 55 years 
old) and late-onset (> 55 years old) prostate cancer based 
on their age at the time of clinical sequencing. Differences 
between the two groups were assessed using the median 
and interquartile range for continuous variables while using 
frequency and percentage for categorical data. A multivariable 
logistic regression was performed to make comparisons of 
the variant gene mutations between early-onset and late-
onset prostate cancer. The covariates in the logistic regression 
included: patient race, ethnicity, sequencing center, and 
primary sample type. Survival analysis was depicted using a 
weighted Kaplan-Meier plot and statistical signifi cance was 
assessed by log rank test. Signifi cance was defi ned for all tests 
using a two-tailed p - value of < 0.05. Analysis in this study 
was conducted using SPSS version 28.0 (IBM Corporation) and 
the RCommander package of R version 4.1.0. 

Results 

A total of 4092 adult male patients were recorded with 
PCa with data derived from 19 international cancer centers 
between 2012 and 2021 in the AACR Genie database. Overall, 
the patient population tended to be made up of non-Hispanic 
White (86.2%) men with primary tumors (63.6%). Patients 
had a mean age (SD) at clinical sequencing of 69.2 (7.7) years 
old. A summary of the patient demographics can be found in 
Table 1A. Patients were dichotomized into early-onset (< 55 
years old) and late-onset (≥ 55 years old) PCa. A total of 452 
patients (11.0%) were defi ned as having a diagnosis of early-
onset PCa with a mean age (SD) of clinical sequencing at 51.4 
(3.2) years old; a total of 3640 patients (89.0%) had a diagnosis 
of late-onset prostate cancer with a mean age (SD) of clinical 
sequencing of at 68.2 (7.1) years old. Patients with early-onset 
PCa were more likely to identify as Black (12.2% vs. 7.7%) 
but had lower rates of metastatic disease (32.0% vs. 45.0%) 
compared to late-onset prostate cancer in our population. 

Among the 4552 samples examined, a total of 35 genes 
had a somatic gene mutation frequency greater than 1% of the 
profi led samples of prostate cancer specimens. The variations 
of the genomic samples included for both groups are shown in 
Figure 1. The frequency for each of the genes between early and 
late-onset PCa can be found in Figure 2. Approximately 3 out 
of every 10 patients had a TP53 mutation which is commonly 
recognized as a driver gene in prostate cancer. The genes 
PTEN, AR, and FOXA1 were all found in greater than 10% of the 
prostate cancer specimens while SPOP, KMT2D, APC, BRCA2, 
KMT2C, ATM, RB1, ZFHX3, and CDK12 were all found among 
greater than 5% of the prostate cancer specimens. A summary 
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of the most signifi cant (p < 0.001) co-occurring or mutually 
exclusive genes based on frequency is defi ned in Table 1B. 
Among both early and late-onset prostate cancer, the genes 
TP53 and CDK12 are mutually exclusive. 

Baseline somatic gene variations are described for the 
entire population; somatic gene variations are further defi ned 
in early-onset and late-onset prostate cancer in Table 2. 

A logistic regression was performed to control for differences 
in both patient and facility differences (race/ethnicity, 
sequencing center, and sample type). Patients with early-onset 
prostate cancer had higher odds of having a somatic mutation 
in CDK12 [1.51 (95% CI: 1.04-2.22)] or ERF [1.81 (95% CI: 1.02-
3.24)] compared to patients who were diagnosed late in life. In 
contrast, patients with early-onset prostate cancer had lower 
odds of having a mutation in AR [0.64 (95% CI: 0.44-0.91); p 
= 0.014], FOXA1 [0.46 (95% CI: 0.32-0.66); p <0.001)], SPOP 
[0.37 (95% CI: 0.24-0.58); p <0.001], RB1 [0.48 (95% CI: 0.26-
0.86); p = 0.014], and ZFHX3 [0.59 (95% CI: 0.36-0.99); p = 
0.044]. 

A further subgroup analysis was performed to assess the 
genes associated with early-onset PCa. Patients with a CDK12 
somatic gene variation were signifi cantly more likely to be 
recorded by race as Black compared to White [1.92 (95% CI: 
1.28- 2.86); p = 0.002). Moreover, patients with a CDK12 
somatic gene variation were more likely to present with 
metastatic disease compared to primary prostate cancer [1.53 
(95% CI: 1.16-2.01); p = 0.003). No signifi cant differences were 
found among any of the patient demographics for patients with 
a somatic gene variation in ERF. 

Interestingly, on survival analysis, the AR and CDK12 

Table 1A: Patient Prostate Cancer Clinical and Demographic Characteristics from 
AACR Project GENIE 2011.

Characteristics Early (n=452) Late (n=3640) Total (n=4092) p - value

Age at clinical sequencing, 
y

NA

40-55 452 452

56-70 2279 2279

71-85 1329 1329

>85 32 32

Mean (SD) 51.4(3.2) 68.2 (7.1) 69.2 (7.7)

Race/ethnicity <0.001 *

Non-Hispanic

White 344 3184 3528

Black 55 281 336

Hispanic 37 126 163

Asian or Pacifi c Islander 15 115 130

Other 33 33 66

Unknown 45 289 334

Stage <0.001 *

Localized/Regional 352 2252 2604

Metastasis 145 1639 1784

Unknown 10 127 137

Figure 1: Variations in somatic gene mutations after logistic regression. 

Gene Symbol OR (95 % CI) p value

AR 0.64 (0.44-0.91) 0.014 *

FOXA1 0.46 (0.32-0.66) <0.001*

SPOP 0.37 (0.24-0.58) <0.001*

RB1 0.48 (0.26-0.86) 0.014 *

ZFHX3 0.59 (0.36-0.99) 0.044 *

CDK12 1.51 (1.04-2.22) 0.032 *

ERF 1.81 (1.02-3.24) 0.043 *

Figure 2: Frequency of somatic gene mutations between early vs. late onset PCa.

Table 1B: Summary of the most signifi cant co-occurring or mutually exclusive genes.

Early-onset prostate cancer

Co-occurrence Mutually exclusive 

KMT2D ZFHX3 TP53 CKD12

ASXL1 SLX4

JAK1 ERF

CREBBP ERF

SPEN JAK1

Late-onset prostate cancer

Co-occurrence Mutually exclusive 

TP53 PTEN SPOP PTEN

TP53 AR TP53 SPOP

SPOP APC TP53 CDK12

SPEN JAK1 PTEN CDK12

KMT2A JAK1 SPOP CDK12
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genes were associated with worse survival compared to the 
other genes in our panel. Figure 3 depicts the 5-year Kaplan-
Meier curves for ERF, AR, FOXA1, RB1, ZFHX3, and CDK12. The 
median overall survival for the entire cohort was 141 months 
(95% CI 114-166, p < 0.001). The overall survival for AR and 
CDK12 genes was 30 months (95% CI 21-34, p < 0.001) and 56 
months (95% CI 51-70, p < 0.001) respectively. 

Discussion 

This study used multivariate analysis to identify multiple 
genes associated with early and late-onset prostate cancer. 
Key genes associated with early-onset prostate cancer included 

CDK12 and ERF. Genes associated with this study for late-onset 
prostate cancer included AR, FOXA1, SPOP, and ZFHX3. 

The genetic pathogenesis of prostate cancer 

The genetic pathogenesis of PCa has been explored in 
multiple contexts, including germline, somatic, and epigenetic 
mutations. The collective knowledge base for all forms of 
genetic testing has rapidly increased in recent decades, as 
improved access to NGS tools and declining costs have allowed 
clinicians and researchers alike to benefi t heavily from these 
resources [10,11]. A thorough family history (including history 
of previously identifi ed high-risk germline mutations, certain 

Table 2: Somatic Variation Between Patients with PCa.

Proportion of tumors with a somatic variant Proportion of tumors with a somatic variant by age
Regression Odds

Ratio for Age <55 y

Gene Symbol All Ages  <55 y  ≥55 y  OR (95% CI)  p-value

TP53 (%) 0.301 0.262 0.305 0.90 (0.72-1.11) 0.323

PTEN (%) 0.184 0.156 0.187 0.92 (0.71-1.20) 0.544

AR (%) 0.149 0.083 0.158 0.64 (0.44-0.91) 0.014

FOXA1 (%) 0.127 0.069 0.135 0.46 (0.32-0.66) <0.001

SPOP (%) 0.099 0.045 0.106 0.37 (0.24-0.58) <0.001

KMT2D (%) 0.075 0.079 0.075 1.15 (0.81-1.63) 0.433

APC (%) 0.073 0.047 0.077 0.66 (0.43-1.01) 0.056

BRCA2 (%) 0.067 0.069 0.067 1.18 (0.82-1.71) 0.377

KMT2C (%) 0.058 0.043 0.06 0.74 (0.47-1.16) 0.193

ATM (%) 0.057 0.047 0.058 0.89 (0.57-1.37) 0.591

RB1 (%) 0.056 0.024 0.059 0.48 (0.26-0.86) 0.014

ZFHX3 (%) 0.055 0.034 0.058 0.59 (0.36-0.99) 0.044

CDK12 (%) 0.051 0.069 0.049 1.51 (1.04-2.22) 0.032

PIK3CA (%) 0.043 0.036 0.043 0.88 (0.54-1.46) 0.625

KDM6A (%) 0.041 0.03 0.042 0.71 (0.41-1.22) 0.212

CTNNB1 (%) 0.038 0.037 0.038 1.17 (0.71-1.91) 0.545

FAT1 (%) 0.036 0.03 0.037 0.87 (0.51-1.51) 0.631

MGA (%) 0.034 0.032 0.034 0.97 (0.57-1.65) 0.914

JAK1 (%) 0.031 0.028 0.032 0.96 (0.55-1.70 0.897

MED12 (%) 0.031 0.039 0.03 1.46 (0.89-2.39 0.133

KMT2A (%) 0.029 0.032 0.029 1.23 (0.72-2.10) 0.456

SPEN (%) 0.028 0.036 0.027 1.40 (0.84-2.35) 0.198

ARID1A (%) 0.027 0.02 0.028 0.76 (0.39-1.47) 0.408

CREBBP (%) 0.027 0.022 0.027 0.92 (0.48-1.73) 0.787

ASXL1 (%) 0.026 0.026 0.026 1.11 (0.62-2.01) 0.719

NOTCH1 (%) 0.026 0.036 0.025 1.49 (0.88-2.51) 0.136

ARID1B (%) 0.025 0.028 0.025 1.18 (0.66-2.11) 0.575

SETD2 (%) 0.023 0.018 0.024 0.72 (0.36-1.45) 0.357

GRIN2A (%) 0.022 0.016 0.023 0.76 (0.36-1.59) 0.464

PTPRD (%) 0.022 0.02 0.022 0.92 (0.47-1.79) 0.803

NCOR1 (%) 0.021 0.012 0.023 0.53 (0.23-1.21) 0.132

ERF (%) 0.018 0.03 0.017 1.81 (1.02-3.24) 0.043

SLX4 (%) 0.014 0.01 0.014 0.70 (0.28-1.77) 0.448

KMT2B (%) 0.013 0.008 0.014 0.54 (0.19-1.50) 0.233

PRKDC (%) 0.012 0.01 0.012 0.99 (0.38-2.56) 0.985
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ancestries, and multiple multi-organ cancers) has been the 
mainstay of initiating genetic assessment for clinicians and 
assessment of the genetic profi les of these patients has been 
essential in the recognition of pertinent germline mutations 
[12]. The identifi cation of somatic mutations within active 
prostate cancers has also been a growing fi eld of research and 
has functioned as a driver for optimizing and designing novel 
chemotherapies and immunotherapies [13]. Also included in 
this fi eld of research has been the impact of multiple epigenetic 
drivers, such as chromatin remodeling, DNA methylation, and 
histone modifi cation on the occurrence of prostate cancer 
and management of treatment resistance [14]. The absolute 
prevalence of prostate cancer and its increasing occurrence, 
especially among younger patients, underlies the importance 
of identifying the prognostic and therapeutic implications of 
prostate-cancer-related mutations. There exists a gap in the 
current literature in identifying the role of these markers 
differentially between early and late-onset PCa. The current 
study aims to clarify this gap by identifying the highest yield 
markers for early versus late onset prostate cancer. 

CDK12 

Cyclin-dependent kinase 12 (CDK12), encoded on 
chromosome 17q12, belongs to the cyclin-dependent kinase 
(CDK) family of serine/threonine protein kinases that regulate 
transcriptional and post-transcriptional processes, thereby 
having the ability to modulate multiple cellular functions 
[15]. CDK12 typically functions as a complex with cyclin K, 
with its most well-characterized roles in the regulation of 
gene transcription. Mutations in CDK12 have been associated 
with ovarian, breast, esophageal, uterine, bladder, stomach, 
colorectal, pancreatic, and prostate carcinomas [16]. CDK12 
aberrations have been reported as a biomarker of response to 

immunotherapy for metastatic castration-resistant prostate 
cancer (mCRPC), with deleterious CDK12 alterations found in 
2-4% of primary prostate cancers and 4.7% - 11% of mCRPC 
[17]. Common CDK12 mutations include tandem duplications, 
genomic rearrangements, missense alterations, nonsense 
alterations, and frameshift mutations or indels [18]. FDA-
approved drugs used in patients with CDK12-mutated prostate 
cancer include abiraterone and enzalutamide, however, studies 
have also shown that patients with CDK12-altered prostate 
cancer respond to PD-1 inhibitors such as pembrolizumab [19]. 
An ongoing prospective clinical trial is currently examining 
the combination of ipilimumab plus nivolumab in patients 
with tumors possessing CDK12 alterations [20]. In our study, 
patients with early-onset PCa had higher odds of having a 
mutation in CDK12 compared to patients who were diagnosed 
later in life [1.51 (95% CI: 1.04-2.22); p = 0.032]. 

ERF 

ERF, also known as ETS2 Repressor Factor, is a gene that 
functions to antagonize the members of the ETS protein family 
that collectively operate as transcription factors [21]. ERF has 
been identifi ed to operate in tandem with ERG, an oncoprotein 
whose gene fusion product with TMPRSS2 is seen in nearly 
half of all prostate carcinomas [22]. The effects of a loss of 
function in ERF have been demonstrated to contribute to a 
tumor microenvironment similar to the effects seen by the gain 
of function in TMPRSS2–ERG [23]. Because of this, ERF and 
TMPRSS2–ERG work competitively, and an imbalance in either 
can promote a tumor-supportive environment [24]. Both 
deletions and mutations of ERF for PCa have been identifi ed 
to occur frequently in African-American populations [25]. 
Quantifi cation of ERF gene products may also provide value 
as a prognostic factor for PCa, as copy-number loss has been 

Figure 3: 5-year Kaplan-Meier survival analysis of genetic mutations. 
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identifi ed to be signifi cantly associated with more aggressive 
pathologic features such as T staging, Gleason grading, and 
residual tumor burden in African American men [24,25]. While 
mutations in ERF are most often seen with prostate cancer, 
mutated ERF has also been found in other tumor types including 
colorectal adenocarcinoma and Ewing Sarcoma [26,27]. There 
are currently no therapies or active trials examining the use of 
ERF as a target for prostate cancer management. In this study, 
patients with early-onset prostate cancer had higher odds 
of having a mutation in ERF compared to patients who were 
diagnosed later in life [1.81 (95% CI: 1.02-3.24); P = 0.043] 

AR

The majority of prostate cancers represent androgen-
sensitive malignancies, characterized by their reliance on the 
transcriptional activity of the androgen receptor (AR) for growth 
and proliferation [28]. The AR signaling is the main pathway 
involved in PCa growth, making it a subject of intense scientifi c 
scrutiny and therapeutic focus [29]. Therapies designed to 
inhibit AR activity, such as androgen deprivation therapy and 
next-generation AR antagonists, have demonstrated signifi cant 
clinical effi cacy in managing this disease, underscoring 
the critical role of the androgen receptor in prostate cancer 
progression [30,31]. In the era of precision medicine, this 
involves detailed characterization of the AR pathway, including 
the presence of AR mutations, amplifi cations, and expression 
levels, as well as the potential presence of constitutively active 
AR variants. Such comprehensive molecular profi ling enables 
oncologists to select the most suitable therapies, including AR-
targeted agents, to precisely inhibit AR signaling and address 
the specifi c drivers of the disease in each patient [32,33]. In 
our analysis, AR mutations were more likely to be present in 
late-onset prostate cancer patients, out of which were likely to 
have worse overall survival compared to the patients without 
the mutation. 

FOXA1, SPOP and ZFHX3

Emerging data links unfavorable outcomes to hotspot 
mutations in FOXA1 [34], while mutations in ZFHX3 and 
SPOP remain unclear [35]. FOXA1 is a transcription factor that 
modules the transcription of the AR and it is considered to have 
an important role in facilitating prostate cancer growth [36,37]. 
In our cohort, these mutations were more likely to be present in 
late-onset prostate cancer and in agreement with the current 
literature. The transcription factor known as zinc-fi nger 
homeobox 3 (ZFHX3), alternatively referred to as ATBF1 (AT 
motif-binding factor 1), is a sizable protein encompassing 23 
zinc-fi nger domains, along with 4 homeodomains and various 
additional motifs [38]. ZFHX3 exhibits frequent mutations in 
cases of metastatic or high-grade human prostate cancers, 
with a notable portion of these mutations being frameshift 
alterations, ultimately leading to functional inactivation of 
the protein [39]. Inactivating point mutations within the gene 
responsible for encoding the speckle-type poxvirus and zinc-
fi nger protein (SPOP) represent one of the prevailing genetic 
alterations in prostate cancer. These mutations are observed 
with notable frequency, occurring in approximately 6% to 
15% of cases across both localized and metastatic forms of 

the disease [40]. The inactivation of SPOP leads to an outcome 
wherein there is an elevated expression of the Androgen 
Receptor (AR) at the protein level. This, in turn, augments 
AR-mediated cellular proliferation, emphasizing the pivotal 
role of SPOP in regulating AR-dependent pathways in prostate 
cancer [41]. Collectively, these discoveries have implicated 
SPOP alterations as a distinctive hallmark, delineating a novel 
subclass of prostate cancers [42].

Clinical implications

The analysis of mutations within our cohort has revealed 
a landscape characterized by several mutations across 
various genes based on age of onset. These mutations have 
the potential to profoundly impact the intricate signaling 
pathways that play pivotal roles in treatment, identifying such 
important mutations is the cornerstone to support clinical 
and treatment decisions. One notable example is the use of 
androgen receptor-targeted agents. In addition to AR-targeted 
therapies, other targeted agents are being investigated, such as 
PARP inhibitors for patients with DNA repair gene mutations 
and immunotherapies that aim to harness the immune system 
to attack cancer cells [43]. These approaches are tailored to the 
genetic and molecular characteristics of the patient’s cancer, 
representing a more personalized and effective treatment 
strategy. In our cohort. We identifi ed that CDK12 and ERF were 
more likely to be mutated in early onset. In contrast to mutation 
in the AR receptor which was more frequently mutated in 
late-onset patients. Most interestingly, mutations in the AR, 
FOXA1, RB1, ZFHX3, and SPOP were more likely to have worse 
overall survival compared to patients without mutations. These 
fi ndings are important to further our understanding of disease 
progression in prostate cancer. 

Limitations 

The source data used in this manuscript is directly from 
the AACR Project GENIE. The vast data sharing performed by 
this consortium allows this study to include a large number of 
verifi ed, relevant data points. There are limitations, however, 
created by the use of GENIE that must be acknowledged. 
GENIE does not provide information about the stage, grade, 
or treatment history of tumors. Pertinent demographic factors 
such as lifestyle modifi ers (i.e. obesity) or family history 
of cancer are also not available. Collectively, these factors 
represent possible contributors to age-related prostate cancer 
that this study was unable to explore. Additionally, the genes 
available for assessment within GENIE have established cancer 
markers genes that have previously been sequenced. This 
study does not identify or assess new, novel cancer genes. 
Further, there is an inherent bias in patient selection as not all 
institutions are part of AACR Project Genie and/or have access 
to the appropriate broad tumor sequencing infrastructure. 

Conclusion

The study identifi ed somatic mutations based on age 
of onset of prostate cancer. Mutations in CDK12 and ERF 
were more likely to be present in early onset. In contrast, 
genes associated with late-onset prostate cancer included 
AR, FOXA1, SPOP, and ZFHX3, which are considered to be 
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actionable mutations with the evolution of gene-targeted 
therapy. These fi ndings can aid with the current guidelines for 
age-related prostate cancer screening and management. The 
effective implementation of precision medicine in prostate 
cancer management necessitates the establishment of novel 
genetic biomarker classifi cations, allowing the stratifi cation 
of patients into distinct subgroups tailored to receive specifi c 
therapies accustomed to their unique genetic profi les. 
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