Distinct genetic variants of early and late-onset prostate cancer
Main Article Content
Abstract
Background: The incidence of early-onset Prostate Cancer (PCa) has increased in the last two decades. Men diagnosed with PCa before age 55 have lower 5-year relative survival rates compared to patients diagnosed later in life. Given the enhanced lethality of early-onset PCa, our aim is to evaluate somatic differences between early and late-onset PCa.
Methods: Patients with PCa were dichotomized into early (< 55 years old) and late-onset PCa (≥ 55 years old). Data is derived from the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (GENIE) registry. The GENIE registry contains sequenced tumor samples and clinical data across many cancers a total of 4,546 Patients and 5,740 samples were included with pathologically confirmed prostate adenocarcinoma. The data is derived from 17 cancer centers from 2011 to 2021. Patterns in somatic gene tumor profiles were compared between early-onset and late-onset PCa using a chi-square test and logistic regression.
Results: A total of 452 (11.0%) patients had early-onset PCa while 3640 (89.0%) patients had late-onset PCa. Patients with early-onset PCa were more likely to be Black (12.2% vs. 7.7%) and less likely to have metastatic disease (32.0% vs. 45.0%). After logistic regression, early-onset PCa patients had higher odds of having a mutation in CDK12 [1.51 (95% CI: 1.04-2.22)] and ERF [1.81 (95% CI: 1.02-3.24)]. Patients with a CDK12 mutation were more likely to be Black [1.92 (95% CI: 1.28-2.86); p = 0.002) and to have metastatic disease [1.53 (95% CI: 1.16-2.01); p = 0.003).
Conclusion: Patients with early-onset PCa had distinct somatic gene tumor mutations in ERF and CDK12. Therapeutic targeting of genes associated with early-onset PCa can be potentially useful in future clinical studies.
Downloads
Article Details
Copyright (c) 2023 Chalfant V
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing and protecting the author rights is the central aim and core of the publishing business. Peertechz dedicates itself in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. Peertechz licensing terms are formulated to facilitate reuse of the manuscripts published in journals to take maximum advantage of Open Access publication and for the purpose of disseminating knowledge.
We support 'libre' open access, which defines Open Access in true terms as free of charge online access along with usage rights. The usage rights are granted through the use of specific Creative Commons license.
Peertechz accomplice with- [CC BY 4.0]
Explanation
'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.
Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license.
With this license, the authors are allowed that after publishing with Peertechz, they can share their research by posting a free draft copy of their article to any repository or website.
'CC BY' license observance:
License Name |
Permission to read and download |
Permission to display in a repository |
Permission to translate |
Commercial uses of manuscript |
CC BY 4.0 |
Yes |
Yes |
Yes |
Yes |
The authors please note that Creative Commons license is focused on making creative works available for discovery and reuse. Creative Commons licenses provide an alternative to standard copyrights, allowing authors to specify ways that their works can be used without having to grant permission for each individual request. Others who want to reserve all of their rights under copyright law should not use CC licenses.
Salinas CA, Tsodikov A, Ishak-Howard M, Cooney KA. Prostate cancer in young men: an important clinical entity. Nat Rev Urol. 2014 Jun;11(6):317-23. doi: 10.1038/nrurol.2014.91. Epub 2014 May 13. PMID: 24818853; PMCID: PMC4191828.
Bleyer A, Spreafico F, Barr R. Prostate cancer in young men: An emerging young adult and older adolescent challenge. Cancer. 2020 Jan 1; 126(1):46-57.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4. PMID: 33538338.
Bleyer A, Spreafico F, Barr R. Prostate cancer in young men: An emerging young adult and older adolescent challenge. Cancer. 2020 Jan 1;126(1):46-57. doi: 10.1002/cncr.32498. Epub 2019 Sep 25. PMID: 31553489.
Cheng HH, Sokolova AO, Schaeffer EM, Small EJ, Higano CS. Germline and somatic mutations in prostate cancer for the clinician. Journal of the National Comprehensive Cancer Network. 2019 May 1;17(5):515-21.
Ikeda S, Elkin SK, Tomson BN, Carter JL, Kurzrock R. Next-generation sequencing of prostate cancer: genomic and pathway alterations, potential actionability patterns, and relative rate of use of clinical-grade testing. Cancer Biol Ther. 2019;20(2):219-226. doi: 10.1080/15384047.2018.1523849. Epub 2018 Oct 19. PMID: 30339521; PMCID: PMC6343723.
Saito M, Momma T, Kono K. Targeted therapy according to next generation sequencing-based panel sequencing. Fukushima J Med Sci. 2018 Apr 17;64(1):9-14. doi: 10.5387/fms.2018-02. Epub 2018 Apr 7. PMID: 29628467; PMCID: PMC5956085.
Bose R, Karthaus WR, Armenia J, Abida W, Iaquinta PJ, Zhang Z, Wongvipat J, Wasmuth EV, Shah N, Sullivan PS, Doran MG, Wang P, Patruno A, Zhao Y; International SU2C/PCF Prostate Cancer Dream Team; Zheng D, Schultz N, Sawyers CL. ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature. 2017 Jun 29;546(7660):671-675. doi: 10.1038/nature22820. Epub 2017 Jun 14. PMID: 28614298; PMCID: PMC5576182.
Hovelson DH, Tomlins SA. The Role of Next-Generation Sequencing in Castration-Resistant Prostate Cancer Treatment. Cancer J. 2016 Sep/Oct;22(5):357-361. doi: 10.1097/PPO.0000000000000217. PMID: 27749331; PMCID: PMC5759046.
Huang FW, Mosquera JM, Garofalo A, Oh C, Baco M, Amin-Mansour A, Rabasha B, Bahl S, Mullane SA, Robinson BD, Aldubayan S, Khani F, Karir B, Kim E, Chimene-Weiss J, Hofree M, Romanel A, Osborne JR, Kim JW, Azabdaftari G, Woloszynska-Read A, Sfanos K, De Marzo AM, Demichelis F, Gabriel S, Van Allen EM, Mesirov J, Tamayo P, Rubin MA, Powell IJ, Garraway LA. Exome Sequencing of African-American Prostate Cancer Reveals Loss-of-Function ERF Mutations. Cancer Discov. 2017 Sep;7(9):973-983. doi: 10.1158/2159-8290.CD-16-0960. Epub 2017 May 17. PMID: 28515055; PMCID: PMC5836784.
Schwarze K, Buchanan J, Fermont JM, Dreau H, Tilley MW, Taylor JM, Antoniou P, Knight SJL, Camps C, Pentony MM, Kvikstad EM, Harris S, Popitsch N, Pagnamenta AT, Schuh A, Taylor JC, Wordsworth S. The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom. Genet Med. 2020 Jan;22(1):85-94. doi: 10.1038/s41436-019-0618-7. Epub 2019 Jul 30. PMID: 31358947; PMCID: PMC6944636.
Pruneri G, De Braud F, Sapino A, Aglietta M, Vecchione A, Giusti R, Marchiò C, Scarpino S, Baggi A, Bonetti G, Franzini JM, Volpe M, Jommi C. Next-Generation Sequencing in Clinical Practice: Is It a Cost-Saving Alternative to a Single-Gene Testing Approach? Pharmacoecon Open. 2021 Jun;5(2):285-298. doi: 10.1007/s41669-020-00249-0. Epub 2021 Mar 4. PMID: 33660227; PMCID: PMC8160052.
Doan DK, Schmidt KT, Chau CH, Figg WD. Germline Genetics of Prostate Cancer: Prevalence of Risk Variants and Clinical Implications for Disease Management. Cancers (Basel). 2021 Apr 29;13(9):2154. doi: 10.3390/cancers13092154. PMID: 33947030; PMCID: PMC8124444.
Fay EK, Graff JN. Immunotherapy in Prostate Cancer. Cancers (Basel). 2020;12(7):1752. Published 2020 Jul 1. doi:10.3390/cancers12071752
Goel S, Bhatia V, Biswas T, Ateeq B. Epigenetic reprogramming during prostate cancer progression: A perspective from development. Semin Cancer Biol. 2022 Aug;83:136-151. doi: 10.1016/j.semcancer.2021.01.009. Epub 2021 Feb 2. PMID: 33545340; PMCID: PMC7612861.
Lui GYL, Grandori C, Kemp CJ. CDK12: an emerging therapeutic target for cancer. J Clin Pathol. 2018 Nov;71(11):957-962. doi: 10.1136/jclinpath-2018-205356. Epub 2018 Aug 13. PMID: 30104286; PMCID: PMC6242340.
Paculová H, Kohoutek J. The emerging roles of CDK12 in tumorigenesis. Cell Div. 2017 Oct 27;12:7. doi: 10.1186/s13008-017-0033-x. PMID: 29090014; PMCID: PMC5658942.
Rescigno P, Gurel B, Pereira R, Crespo M, Rekowski J, Rediti M, Barrero M, Mateo J, Bianchini D, Messina C, Fenor de la Maza MD, Chandran K, Carmichael J, Guo C, Paschalis A, Sharp A, Seed G, Figueiredo I, Lambros M, Miranda S, Ferreira A, Bertan C, Riisnaes R, Porta N, Yuan W, Carreira S, de Bono JS. Characterizing CDK12-Mutated Prostate Cancers. Clin Cancer Res. 2021 Jan 15;27(2):566-574. doi: 10.1158/1078-0432.CCR-20-2371. Epub 2020 Sep 28. PMID: 32988971; PMCID: PMC7855716.
Pan E, Cabal A, Javier-DesLoges J, Patel D, Panian J, Lee S, Shaya J, Nonato T, Xu X, Stewart T, Rose B, Shabaik A, Cohen E, Kurzrock R, Tamayo P, McKay RR. Analysis of CDK12 alterations in a pan-cancer database. Cancer Med. 2022 Feb;11(3):753-763. doi: 10.1002/cam4.4483. Epub 2021 Dec 12. PMID: 34898046; PMCID: PMC8817093.
Antonarakis ES, Isaacsson Velho P, Fu W, Wang H, Agarwal N, Sacristan Santos V, Maughan BL, Pili R, Adra N, Sternberg CN, Vlachostergios PJ, Tagawa ST, Bryce AH, McNatty AL, Reichert ZR, Dreicer R, Sartor O, Lotan TL, Hussain M. CDK12-Altered Prostate Cancer: Clinical Features and Therapeutic Outcomes to Standard Systemic Therapies, Poly (ADP-Ribose) Polymerase Inhibitors, and PD-1 Inhibitors. JCO Precis Oncol. 2020;4:370-381. doi: 10.1200/po.19.00399. Epub 2020 Apr 21. PMID: 32462107; PMCID: PMC7252221.
Schweizer MT, Ha G, Gulati R, Brown LC, McKay RR, Dorff T, Hoge ACH, Reichel J, Vats P, Kilari D, Patel V, Oh WK, Chinnaiyan A, Pritchard CC, Armstrong AJ, Montgomery RB, Alva A. CDK12-Mutated Prostate Cancer: Clinical Outcomes With Standard Therapies and Immune Checkpoint Blockade. JCO Precis Oncol. 2020;4:382-392. doi: 10.1200/po.19.00383. Epub 2020 Apr 21. PMID: 32671317; PMCID: PMC7363399.
Sgouras DN, Athanasiou MA, Beal GJ Jr, Fisher RJ, Blair DG, Mavrothalassitis GJ. ERF: an ETS domain protein with strong transcriptional repressor activity, can suppress ets-associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation. EMBO J. 1995 Oct 2;14(19):4781-93. doi: 10.1002/j.1460-2075.1995.tb00160.x. PMID: 7588608; PMCID: PMC394576.
Bose R, Karthaus WR, Armenia J, Abida W, Iaquinta PJ, Zhang Z, Wongvipat J, Wasmuth EV, Shah N, Sullivan PS, Doran MG, Wang P, Patruno A, Zhao Y; International SU2C/PCF Prostate Cancer Dream Team; Zheng D, Schultz N, Sawyers CL. ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature. 2017 Jun 29;546(7660):671-675. doi: 10.1038/nature22820. Epub 2017 Jun 14. PMID: 28614298; PMCID: PMC5576182.
Lorenzin F, Demichelis F. Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers (Basel). 2022 Feb 22;14(5):1118. doi: 10.3390/cancers14051118. PMID: 35267426; PMCID: PMC8909394.
Zhou F, Gao S, Han D, Han W, Chen S, Patalano S, Macoska JA, He HH, Cai C. TMPRSS2-ERG activates NO-cGMP signaling in prostate cancer cells. Oncogene. 2019 May;38(22):4397-4411. doi: 10.1038/s41388-019-0730-9. Epub 2019 Feb 4. PMID: 30718921; PMCID: PMC6542710.
Huang FW, Mosquera JM, Garofalo A, Oh C, Baco M, Amin-Mansour A, Rabasha B, Bahl S, Mullane SA, Robinson BD, Aldubayan S, Khani F, Karir B, Kim E, Chimene-Weiss J, Hofree M, Romanel A, Osborne JR, Kim JW, Azabdaftari G, Woloszynska-Read A, Sfanos K, De Marzo AM, Demichelis F, Gabriel S, Van Allen EM, Mesirov J, Tamayo P, Rubin MA, Powell IJ, Garraway LA. Exome Sequencing of African-American Prostate Cancer Reveals Loss-of-Function ERF Mutations. Cancer Discov. 2017 Sep;7(9):973-983. doi: 10.1158/2159-8290.CD-16-0960. Epub 2017 May 17. PMID: 28515055; PMCID: PMC5836784.
Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, Bahl S, Cao Y, Amin-Mansour A, Yamauchi M, Sukawa Y, Stewart C, Rosenberg M, Mima K, Inamura K, Nosho K, Nowak JA, Lawrence MS, Giovannucci EL, Chan AT, Ng K, Meyerhardt JA, Van Allen EM, Getz G, Gabriel SB, Lander ES, Wu CJ, Fuchs CS, Ogino S, Garraway LA. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Rep. 2016 Apr 26;15(4):857-865. doi: 10.1016/j.celrep.2016.03.075. Epub 2016 Apr 14. Erratum in: Cell Rep. 2016 Oct 18;17 (4):1206. PMID: 27149842; PMCID: PMC4850357.
Crompton BD, Stewart C, Taylor-Weiner A, Alexe G, Kurek KC, Calicchio ML, Kiezun A, Carter SL, Shukla SA, Mehta SS, Thorner AR, de Torres C, Lavarino C, Suñol M, McKenna A, Sivachenko A, Cibulskis K, Lawrence MS, Stojanov P, Rosenberg M, Ambrogio L, Auclair D, Seepo S, Blumenstiel B, DeFelice M, Imaz-Rosshandler I, Schwarz-Cruz Y Celis A, Rivera MN, Rodriguez-Galindo C, Fleming MD, Golub TR, Getz G, Mora J, Stegmaier K. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014 Nov;4(11):1326-41. doi: 10.1158/2159-8290.CD-13-1037. Epub 2014 Sep 3. PMID: 25186949.
Fujita K, Nonomura N. Role of Androgen Receptor in Prostate Cancer: A Review. World J Mens Health. 2019 Sep;37(3):288-295. doi: 10.5534/wjmh.180040. Epub 2018 Sep 10. PMID: 30209899; PMCID: PMC6704300.
Culig Z, Santer FR. Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev. 2014 Sep;33(2-3):413-27. doi: 10.1007/s10555-013-9474-0. PMID: 24384911.
Aurilio G, Cimadamore A, Mazzucchelli R, Lopez-Beltran A, Verri E, Scarpelli M, Massari F, Cheng L, Santoni M, Montironi R. Androgen Receptor Signaling Pathway in Prostate Cancer: From Genetics to Clinical Applications. Cells. 2020 Dec 10;9(12):2653. doi: 10.3390/cells9122653. PMID: 33321757; PMCID: PMC7763510.
Sharifi N, Gulley JL, Dahut WL. Androgen Deprivation Therapy for Prostate Cancer. JAMA. 2005; 294(2):238-244. doi:10.1001/jama.294.2.238
Morova T, McNeill DR, Lallous N, Gönen M, Dalal K, Wilson DM 3rd, Gürsoy A, Keskin Ö, Lack NA. Androgen receptor-binding sites are highly mutated in prostate cancer. Nat Commun. 2020 Feb 11;11(1):832. doi: 10.1038/s41467-020-14644-y. PMID: 32047165; PMCID: PMC7012874.
Shiota M, Akamatsu S, Tsukahara S, Nagakawa S, Matsumoto T, Eto M. Androgen receptor mutations for precision medicine in prostate cancer. Endocr Relat Cancer. 2022 Aug 17;29(10):R143-R155. doi: 10.1530/ERC-22-0140. PMID: 35900853.
Zhao Y, Tindall DJ, Huang H. Modulation of androgen receptor by FOXA1 and FOXO1 factors in prostate cancer. Int J Biol Sci. 2014 Jun 5;10(6):614-9. doi: 10.7150/ijbs.8389. PMID: 24948874; PMCID: PMC4062954.
Mangolini A, Rocca C, Bassi C, Ippolito C, Negrini M, Dell'Atti L, Lanza G, Gafà R, Bianchi N, Pinton P, Aguiari G. Detection of disease-causing mutations in prostate cancer by NGS sequencing. Cell Biol Int. 2022 Jul;46(7):1047-1061. doi: 10.1002/cbin.11803. Epub 2022 Apr 6. PMID: 35347810; PMCID: PMC9320837.
Gao S, Chen S, Han D, Barrett D, Han W, Ahmed M, Patalano S, Macoska JA, He HH, Cai C. Forkhead domain mutations in FOXA1 drive prostate cancer progression. Cell Res. 2019 Sep;29(9):770-772. doi: 10.1038/s41422-019-0203-2. Epub 2019 Jul 19. PMID: 31324883; PMCID: PMC6796877.
Shah N, Brown M. The sly oncogene: FOXA1 mutations in prostate cancer. Cancer Cell. 2019; 36: 119-121. https://doi.org/10.1016/j.ccell.2019.07.005
Miura Y, Tam T, Ido A, Morinaga T, Miki T, Hashimoto T, Tamaoki T. Cloning and characterization of an ATBF1 isoform that expresses in a neuronal differentiation-dependent manner. J Biol Chem. 1995 Nov 10;270(45):26840-8. doi: 10.1074/jbc.270.45.26840. PMID: 7592926.
Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, Asangani IA, Ateeq B, Chun SY, Siddiqui J, Sam L, Anstett M, Mehra R, Prensner JR, Palanisamy N, Ryslik GA, Vandin F, Raphael BJ, Kunju LP, Rhodes DR, Pienta KJ, Chinnaiyan AM, Tomlins SA. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012 Jul 12;487(7406):239-43. doi: 10.1038/nature11125. PMID: 22722839; PMCID: PMC3396711.
Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N, Nickerson E, Chae SS, Boysen G, Auclair D, Onofrio RC, Park K, Kitabayashi N, MacDonald TY, Sheikh K, Vuong T, Guiducci C, Cibulskis K, Sivachenko A, Carter SL, Saksena G, Voet D, Hussain WM, Ramos AH, Winckler W, Redman MC, Ardlie K, Tewari AK, Mosquera JM, Rupp N, Wild PJ, Moch H, Morrissey C, Nelson PS, Kantoff PW, Gabriel SB, Golub TR, Meyerson M, Lander ES, Getz G, Rubin MA, Garraway LA. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012 May 20;44(6):685-9. doi: 10.1038/ng.2279. PMID: 22610119; PMCID: PMC3673022.
Geng C, Rajapakshe K, Shah SS, Shou J, Eedunuri VK, Foley C, Fiskus W, Rajendran M, Chew SA, Zimmermann M, Bond R, He B, Coarfa C, Mitsiades N. Correction: Androgen Receptor Is the Key Transcriptional Mediator of the Tumor Suppressor SPOP in Prostate Cancer. Cancer Res. 2019 Sep 1;79(17):4552. doi: 10.1158/0008-5472.CAN-19-1981. Erratum for: Cancer Res. 2014 Oct 1;74(19):5631-43. PMID: 31481421.
Blattner M, Lee DJ, O'Reilly C, Park K, MacDonald TY, Khani F, Turner KR, Chiu YL, Wild PJ, Dolgalev I, Heguy A, Sboner A, Ramazangolu S, Hieronymus H, Sawyers C, Tewari AK, Moch H, Yoon GS, Known YC, Andrén O, Fall K, Demichelis F, Mosquera JM, Robinson BD, Barbieri CE, Rubin MA. SPOP mutations in prostate cancer across demographically diverse patient cohorts. Neoplasia. 2014 Jan;16(1):14-20. doi: 10.1593/neo.131704. PMID: 24563616; PMCID: PMC3924544.
Congregado B, Rivero I, Osmán I, Sáez C, Medina López R. PARP Inhibitors: A New Horizon for Patients with Prostate Cancer. Biomedicines. 2022 Jun 15;10(6):1416. doi: 10.3390/biomedicines10061416. PMID: 35740437; PMCID: PMC9220343.