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Abstract

Coronary Artery Disease (CAD) is a global chronic infl ammatory disease with high morbidity and mortality, seriously endangering human health and life quality. 
Therefore, exploring the critical molecular mechanisms and identifying potential signaling pathways in CAD progression is vital. We reanalyzed peripheral blood mRNA 
microarray expression data from the GSE34822 dataset and identifi ed 15 gene co-expression modules using weighted gene co-expression network analysis (WGCNA). 
 �One of the modules was found to be closely associated with CAD progression, mediating pathways such as platelet degranulation, platelet activation, and platelet 
aggregation. Genes including NID2, PGRMC1, TSC22D1, LOC340508, KIAA1211, and SMIM3 were signifi cantly correlated with CAD progression. Positive regulation of 
interleukin−13 production and regulation of monocyte differentiation were identifi ed to be related to these six key genes. Specifi cally, we discovered that the SMIM3 gene 
was associated with monocyte infi ltration and further developed a SMIM3-related competitive endogenous RNA (ceRNA) network. This suggests that SMIM3 plays a role 
in monocyte differentiation, contributing to plaque instability and accelerating CAD progression. In this study, we identifi ed six key genes in the crucial module as potential 
biomarkers for diagnosing and treating progressive CAD. Additionally, we constructed a ceRNA network offering insights into CAD’s underlying regulatory mechanisms.

Highlights
1. NID2, PGRMC1, TSC22D1, LOC340508, KIAA1211, and SMIM3 provide signifi cant association with CAD progression.

2. SMIM3 was upregulated in patients with progressive CAD by qRT-PCR.

3. Positive regulation of interleukin−13 production and regulation of monocyte differentiation were related to SMIM3 expression.

4. The SMIM3 gene was associated with monocyte cell infi ltration in patients with CAD progression.
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Introduction

Coronary artery disease (CAD) is an infl ammatory 
atherosclerotic disease that has become a signifi cant global 
public health burden, manifesting as stable angina, unstable 
angina, myocardial infarction, or sudden cardiac death [1]. The 
formation of atherosclerotic plaques involves infl ammation, 
leading to plaque erosion or rupture, which can cause partial 
or total coronary artery occlusion. Plaque buildup ultimately 
results in acute myocardial infarction [2,3]. The risk factors 
of CAD mainly include hypertension, diabetes, a sedentary 
lifestyle, smoking, obesity, stress, and hyperlipidemia [4]. Due 
to poor living and working habits, CAD still maintains high 
morbidity and mortality [5]. Understanding the mechanisms of 
plaque progression indicates that atherosclerosis is a complex 
and multifactorial disease [6]. CAD begins with damage to the 
lining of the coronary arteries, followed by the accumulation 
of fatty deposits composed of cholesterol and other cellular 
impurities at the injury site [7]. Specifi cally, low-density 
lipoprotein (LDL) plays a key role in the early events of 
atherosclerotic plaque formation. Accumulated LDL undergoes 
oxidative modifi cation under the action of smooth muscle cells 
(SMCs), monocytes, and endothelial cells, forming oxidized 
LDL (ox-LDL). Ox-LDL further aggravates endothelial injury 
and stimulates endothelial cells to produce molecules such as 
E-selectin or P-selectin, promoting the migration of circulating 
monocytes to the vascular wall and promoting infl ammation 
[8]. If the plaque surface ruptures, platelets accumulate at the 
injury site and try to repair the artery [9]. Clinically, CAD is 
considered a chronic disease; however, it is progressive, and 
clinical symptoms may not be obvious [1]. Stable CAD can 
remain stable for extended periods but can become unstable 
at any time due to plaque rupture or erosion, leading to acute 
coronary artery events [10]. In recent years, the prevention 
and treatment of CAD have remained a signifi cant challenge 
worldwide. Therefore, an accurate assessment of stable CAD 
is urgent, and the molecular mechanisms associated with CAD 
progression must be explored further.

Weighted Gene Co-expression Network Analysis (WGCNA) 
is a mainstream research method primarily applied to large-
sample gene expression data [11]. Genes are gathered together 
and grouped into a few modules based on gene expression 
similarity, and the modules are distinguished by the module 
eigengene or hub gene. Then the correlation between modules 
and clinical traits is calculated to select modules that are highly 
positively correlated to characteristics, and analyze the genes in 
the modules. Due to its excellent function, WGCNA has also been 
used in cardiovascular diseases [12,13], successfully identifying 
several potential genes or disease-related pathways. However, 
detecting the molecular mechanisms and signaling pathways 
of progressive CAD has not been reported.

To further reveal the potential key genes and signaling 
pathways in CAD progression, we constructed a weighted 
gene co-expression network using the GSE34822 dataset. 
We identifi ed representative modules closely related to CAD 
progress. Vital regulatory genes were obtained by intersecting 
differentially expressed genes and the genes in usual modules. 

Then, functional enrichment analysis was used to identify 
the role of the interested genes in the pathological process, 
and gene set enrichment analysis (GSEA) [14] was used to 
reveal the potential regulatory processes of key genes. The 
CIBERSORT method was employed to assess the differential 
immune cell infi ltration between progressive CAD samples and 
stable donors [15]. Finally, based on the predicted interactions 
of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), 
we constructed competitive endogenous RNA (ceRNA) networks 
to further explore the mechanisms driving disease progression. 
This study enhances our understanding of CAD pathogenesis 
and offers valuable insights for potential therapeutic strategies.

Materials and methods

Data collection and analysis

The CAD-related dataset was obtained from GSE34822 
[16]. The dataset comprised a total of 32 samples: 16 patients 
with signifi cant lesion progression leading to repeated 
coronary interventions and 16 patients with angiographically 
documented stable courses. After computing and ranking the 
median absolute deviation, we fi ltered the top 75% of rank 
genes for WGCNA analysis. To identify differentially expressed 
genes (DEGs) in the GSE34822 microarray dataset, we employed 
the limma package (version 3.46.0) [17] in the R software. The 
selection criteria for DEGs were set to an adjusted p-value 
(adj.p.Val) < 0.05 and an absolute log2 fold change (|log2FC|) 
> 0.5. Furthermore, we obtained additional mRNA expression 
profi les of peripheral blood monocytes at different stages of 
CAD from GSE166780 [18]. The dataset consisted of 8 samples 
representing normal coronary arteries, 8 with intermediate 
coronary lesions, and 8 with acute myocardial infarction.

Weighted gene co-expression network analysis

The WGCNA R package (version 1.70.3) [11] was used to 
construct the network of 14,692 genes obtained from the 
GSE34822 dataset. To ensure reliable network construction 
results, we removed the outlier samples based on the 
unsupervised clustering method. The soft threshold power was 
selected based on the standard scale-free network criteria, and 
genes in the third quartile of variance were computed using 
a power function. MergeCutHeight referred to the height for 
cutting the dendrogram in the process of module merging, 
which was associated with the quantities and accuracy 
of modules we fi nally collected. Setting abline to 0.25, an 
appropriate quantity of modules was harvested. Eventually, the 
modules containing highly homogenous genes were merged 
under a 0.25 MergeCutHeight, and 15 modules were fi nally 
gathered. The grey module contained meaningless genes that 
cannot be categorized in any module by default and were 
subsequently removed in downstream analysis.

Identifi cation of key gene modules associated with pro-
gressive CAD

Pearson’s correlation tests were conducted to evaluate the 
relationships between clinical traits and gene modules, helping 
to identify signifi cant modules. We then defi ned Module 
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Membership (MM) as the correlation between gene expression 
profi les and module eigengenes, while Gene Signifi cance (GS) 
was defi ned as the absolute correlation between external traits 
and gene expression profi les. Further analyses were focused 
on genes within the most relevant modules, specifi cally those 
with the highest MM and GS values.

Functional enrichment analysis performed on interested 
modules

To identify the biological role that genes played in the 
pathological process, the  clusterProfi ler R package (version 
4.0.0) [19] was utilized to carry out GO and KEGG enrichment 
analysis on targets we extracted from interested modules.

 Gene set enrichment analysis

To investigate the underlying functions of the fi ltering 
critical genes involved in CAD with progression, we used the 
clusterProfi ler R package (version 4.0.0) [19] for functional 
enrichment analysis based on GO biology process gene sets. 
The p value at < 0.05 was regarded as statistically enriched.

Immune infi ltration analysis via CIBERSORT

To explore the composition of individual immune cells 
in CAD samples, we used the CIBERSORT tool for immune 
infi ltration estimation [15]. CIBERSORT is a deconvolution 
method that characterizes the composition of the immune cells 
from gene expression profi les.

Receiver operating characteristic curve analysis

To validate the abilities of interested genes or factors for 
diagnosis, we used the pROC R package (version 1.17.0.1) [20] 
for constructing the Receiver Operating Characteristic (ROC) 
curve. The values of areas under the ROC curves were defi ned 
as AUC.

Construction of ceRNA Networks

We used two independent miRNA databases, respectively, 
Targetscan (https://www.targetscan.org/vert_80/) [21] and 
miRDB (http://mirdb.org/) [22], to predict target miRNAs of 
interested genes and screened common miRNAs in these two 
databases. Then, we used online StarBase database (https://
starbase.sysu.edu.cn/index.php) [23] to predict lncRNAs that 
interacted with the predicted miRNAs based on the following 
screening criteria, including mammalian, human hg19 
genome, strict stringency (≥ 5) of CLIP- Data, and with or 
without degradome data. CeRNA networks were constructed 
based on predicted interactions among mRNAs, miRNAs, and 
lncRNAs, and visualized using the Cytoscape software (version 
3.8.2) [24].

Sample collection

Patients with progressive (n = 6) or stable (n = 6) CADs 
were selected from the second affi liated hospital of Zhejiang 
University School of Medicine, depending on whether there 
was evidence of disease progression. PERIPHERAL BLOOD 
MONONUCLEAR CELLS (PBMCs) were extracted from the 

heparinized venous blood of patients by Ficoll-Hypaque 
(Amersham Biosciences) density gradient centrifugation. All 
patients agreed to blood preservation after providing informed 
consent. This study involves human participants and was 
approved by the Ethics Committee of the Second Affi liated 
Hospital of Zhejiang University (I20211258 (1)).

Quantitative real-time PCR

RNA was extracted from patient PBMCs using Trizol (In-
vitrogen, Carlsbad, CA, USA) following the manufacturer’s in-
structions. cDNA was synthesized using reverse transcription 
kit (Roche, Indianapolis, IN, USA) and subsequently amplifi ed 
by qRT-PCR using an ABI Prism system (Applied Biosystems, 
Foster City, CA). Data were analyzed using the ΔCt method 
normalized to GAPDH expression values in the samples. The 
measurements of each sample were performed in triplicate. 
The primer sequences are as follows, which were designed ac-
cording to NCBI database and used for PCR amplifi cation: NID2, 
5′-CCGGTGCTGTCGTCGTTAC-3′ and 5′- GGCTTCGTAGAAGT-
GCAGGG-3′; PGRMC1, 5′-AAAGGCCGCAAATTCTACGG-3′ and 
5′-CCCAGTCACTCAGAGTCTCCT-3′; TSC22D1, 5′-TCTCCGC-
TAGTATCAGCTCTAAC-3′ and 5′-ACACATCAAGGATCTCC-
GAAGAA-3′; LOC340508, 5′-GCAAGGATGGAGATGGGC-3′ and 
5′-CTGGGTTTGGACTGGGAA-3′; KIAA1211, 5′-GAGGATCT-
GTTCCTGACCAGT-3′ and 5′-GGACTTAGAGAACTTGGCG-
TATC-3′; SMIM3, 5′-ATGGATGCAGTCAGCCAAGTC-3′ and 
5′-CCCACTAAGGATCGGATGAGT-3′. All experiments were per-
formed in accordance with relevant guidelines and regulations.

Statistics

All statistical an a lyses in this study were calculated using 
R software (http://www.r-project.org, version 4.0.4). The 
Wilcoxon rank-sum test was used to compare differences 
between two groups, while the Kruskal-Wallis H test was 
employed for comparisons among three groups. It was regarded 
as statistically signifi cant when p was at < 0.05.

Results

Construction of weighted gene   co-expression network 
in CAD

We collected microarray sequencing data from the 
peripheral blood of 32 patients with progressive and stable 
CAD, including 16 patients with progressive and 16 with stable 
disease in GSE34822. Sample GSM855911 was identifi ed as an 
outlier and excluded from subsequent analyses (Figure 1A). To 
construct a scale-free topology network, the soft threshold 
power (β) of 3 was estimated (Figure 1B,1C). The hierarchical 
clustering tree revealed that 15 co-expression modules were 
identifi ed (Figure 1D, S1A, TableS2).

Identifi cation of modules in the co-expression network

Following the construction of the weighted gene co-
expression network, we calculated the dissTOM matrix 
(Figure 2A). Modules of correlated eigengenes were identifi ed 
through a hierarchical clustering dendrogram and heatmap 
construction (Figure 2B). Figure 2C illustrates the expression 
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Figure 1: Construction of gene co-expression network. (A) Sample dendrogram for detecting outliers. (B) Scale-free fi t parameters of different soft-thresholding powers. 
(C) Mean connectivity of different soft-thresholding powers. (D) The Cluster dendrogram of co-expression network modules, different colors represent different modules.
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of related genes and eigengene across the fi fteen modules, 
excluding the grey module, which contained genes that could 
not be clustered.

Identifi cation of gene co-expression modules correlated 
with progressive CAD traits

The Pearson correlation coeffi cients for the above modules 
and the clinical information were calculated to identify which 
modules were related to the clinical traits (Figure 3A and Table 
S3). The tan module showed a signifi cant association with CAD 
progression (R = 0.48, p = 0.007) (Figure 3A), suggesting its 
potential biological signifi cance in promoting CAD progression. 
Hierarchical clustering and heatmap analysis further confi rmed 
that the tan module was most signifi cantly associated with 
disease progression (Figure 3B). In addition, Figure 3C showed 
the signifi cance of these genes in the tan module for disease 
progression (Rho = 0.4, p < 0.001). 

To further investigate the biological functions of the tan 
module, GO and KEGG pathway analyses were performed. 
Genes in the tan module were enriched in KEGG pathways 
involved in platelet degranulation, platelet activation, and 
platelet aggregation. In terms of biological process-associated 
pathways, these genes were mainly enriched in focal adhesion, 
ECM−receptor interaction, and platelet activation (Figure 
4A,B, and Table S4). This suggested that platelet activation and 

aggregation play a crucial role in the progression of CAD [25]. 
To further verify the ability to diagnose progressive CAD, we 
could distinguish progressive CAD patients from stable CAD 
patients by principal component analysis based on the tan 
module eigengenes expression (Figure 4C). Furthermore, the 
ROC curve verifi ed that the tan module could be employed to 
distinguish progressive CAD patients from stable CAD patients 
(AUC = 0.8042) (Figure S1B). Consequently, hub genes were 
identifi ed within the tan module.

Authentication of key genes of tan module

To identify hub genes within the tan module, we compared 
progressive samples with stable samples and identifi ed a total 
of 131 differentially expressed genes, which comprised 120 
downregulated genes and 11 upregulated genes by analyzing 
the dataset GSE34822 (Figure 5A). Intersecting with the genes 
in the tan module, we obtained six key genes, including NID2, 
PGRMC1, TSC22D1, LOC340508, KIAA1211, and SMIM3 (Figure 
5B). The expression of the six key genes was signifi cantly and 
specifi cally upregulated in progressive samples (Figure 5C). 
Additionally, we quantifi ed the ROC curves for each key gene 
to assess their diagnostic potential. The AUC values were as 
follows: PGRMC1 (0.9083), TSC22D1 (0.9042), NID2 (0.8875), 
LOC340508 (0.8583), KIAA1211 (0.8292), and SMIM3 (0.8667) 
(Figure S1C). These high AUC values indicate strong diagnostic 
potential. PBMC samples were collected from three patients 
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Figure 3: The relationships between modules and clinical traits. (A) Module-trait associations. Each column corresponds to a trait, and each row corresponds to a module. 
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with progressive CAD and three patients with stable CAD, 
and qPCR experiments were performed to verify the mRNA 
expression levels of the above six key genes (Figure 5D).

Functional enrichment analysis of CAD progressive key 
genes

To explore the specifi c functions of the identifi ed key 
genes, we conducted GSEA analysis. As indicated by the results 
of the GSEA analysis, coronary vasculature development, 
microtubule anchoring at the centrosome, microtubule 
anchoring at the microtubule organizing center, positive 
regulation of interleukin−13 production, and regulation of 
monocyte differentiation were associated with these six key 
genes (Figures 5E and Table S5). These pathways had a close 
correlation with CAD, suggesting that the six key genes may 
play a role in CAD progression.

Assessment of immunocytes infi ltration in CAD samples

The above fi ndings suggest a close relationship between 
monocytes and CAD progression. We used the CIBERSORT 
algorithm to identify immune cell infi ltration of patients 
suffering from progressive samples compared to stable 
samples. The results showed that monocytes were specifi cally 
enriched in the peripheral blood of patients with CAD 
progression (Figure 6A). We observed a signifi cant positive 
correlation between the expression of SMIM3 and the composing 
proportion of Monocyte via correlation analysis (Rho = 0.3782, 
p = 0.018) (Figure 6B). The result suggested that patients 
with high expression of SMIM3, along with the enrichment of 
monocytes in peripheral blood, contribute to plaque instability 
and promote rapid CAD progression. We further verifi ed the 
expression of 6 critical genes in peripheral blood monocytes 

in different stages of CAD. Further verifi cation using the 
GSE166780 dataset showed consistent upregulation of SMIM3 
in peripheral blood monocytes from CAD patients (Figure 
6C). Collectively, these fi  ndings indicate that SMIM3 plays a 
potential progressive role in CAD.

Construction of the SMIM3 regulated ceRNA network

It is well established that miRNAs can induce gene silencing 
and downregulate gene expression by binding to target 
mRNAs [26]. However, upstream molecules such as lncRNAs 
can modulate miRNA activity by binding to them, which in 
turn can result in the upregulation of gene expression [27]. 
MicroRNAs play important roles in many cellular and biological 
functions via the regulation of mRNA target translation. In 
the cardiovascular fi eld, microRNAs are now acknowledged 
as fundamental in regulating the expression of genes that 
governs physiological and pathological myocardial adaptation 
to stress. This interaction among RNAs is referred to as a 
ceRNA network [28]. Using two online miRNA databases, we 
predicted 11 target miRNAs for SMIM3, including hsa-let-7i-
5p, hsa-let-7f-5p, hsa-let-7c-5p, hsa-miR-4500, hsa-let-
7e-5p, hsa-miR-98-5p, hsa-let-7a-5p, hsa-let-7b-5p, hsa-
let-7g-5p, hsa-let-7d-5p and hsa-miR-4458. Then, we used 
the online database Starbase 3.0 [23] to predict the lncRNAs 
that interact with the 11 above miRNAs. Finally, we identifi ed 
two target lncRNAs of the miRNAs targeting SMIM3: XIST and 
LINC02381. The ceRNA network was constructed based on these 
predicted interactions and visualized using Cytoscape (Figure 
7). In summary, we constructed the ceRNA network to reveal 
the potential RNA regulatory pathways to further elucidate the 
underlying progress of CAD.
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Discussion

CAD is a chronic infl ammatory disease caused by the 
accumulation of fatty plaques within the cardiovascular system 
[29]. Its pathogenesis is mainly due to the interaction between 
endothelial cells dysfunction and cholesteryl lipoproteins in the 
subendothelial layer, and subsequent changes in endothelial 
cells permeability trigger infi ltration of monocytes in the 
subendothelial layer, which differentiate into macrophages 
and release infl ammatory mediators [30]. Current research 
focuses on plaque formation driving the pathogenesis of CAD, 
but infl ammation, as a systemic process, plays a central role 
in the progression of atherosclerotic plaques. Recent studies 
have found that although patients with stable plaques are not 
in a high-risk state at the time of diagnosis, stable plaques 
can deteriorate rapidly and quickly reach a very high-risk state 
[31]. To further aid the prevention and early detection of CAD 
progression, it is crucial to gain a deeper understanding of 
the molecular mechanisms and regulatory pathways involved 
in rapid CAD progression. Therefore, this study focused on 
analyzing patients with progressive CAD and stable CAD. 
Using WGCNA and integrating the clinical characteristics of 
the samples, we identifi ed the tan module as signifi cantly 
associated with CAD progression among 15 modules. The 
results of KEGG and GO enrichment analysis showed that the 
tan module was mainly involved in platelet-related biological 
processes such as platelet activation, platelet degranulation, 
and platelet aggregation. Studies have demonstrated that 
platelets play an potential biological role in cardiovascular 
disease, both in the pathogenesis of atherosclerosis and 
acute thrombotic events [32]. Platelet activation pathways 
are mechanistically connected to monocyte infi ltration in 
several ways. Platelets interact with monocytes via multiple 
mechanisms, including the binding of platelet P-selectin to 
monocyte PSGL-1, the release of platelet granules containing 
chemokines and cytokines, and the shedding of platelet-
derived microvesicles. These interactions upregulate monocyte 
pro-infl ammatory surface markers, enhance their migration 
capabilities, and promote a pro-coagulant phenotype. 
Activated platelets also release chemokines like CXCL4, 
which promote monocyte adhesion to endothelial cells and 
their transmigration into atherosclerotic lesions. Monocytes 

exposed to platelets exhibit increased expression of pro-
infl ammatory cytokines such as TNF-α, MCP-1, and IL-1β, and 
adopt a pro-atherosclerotic phenotype. This platelet-monocyte 
crosstalk is critical in driving infl ammation and thrombosis in 
cardiovascular diseases [33,34]. In this work, we identifi ed that 
genes such as NID2, PGRMC1, TSC22D1, LOC340508, KIAA1211, 
and SMIM3 may promote disease progression through 
platelet-monocyte crosstalk. Among these, LOC340508 and 
KIAA12 1 1  are indeed less characterized in the literature, their 
specifi c functions in atherosclerosis or cardiovascular diseases 
remain largely unknown. Further experimental studies are 
required to elucidate their roles in these processes. Notably, 
the SMIM3 gene, encoding small integral membrane protein 
3, was associated with monocyte cell infi ltration, and could 
achieve protein binding function in monocytes probably by 
having structural similarity to cytokine receptor common 
subunit beta, as predicted by the SWISS-MODEL database 
(https://swissmodel.expasy.org/repository/uniprot/Q9BZL3). 
It suggested SMIM3 may regulate monocyte differentiation, 
contributing to plaque instability, thereby promoting the rapid 
progression of CAD.

Furthermore, antiplatelet drugs have been used to treat CAD 
and acute coronary syndrome, which further supports the role 
of platelets in CAD progression [35]. Then, we further screened 
genes specifi cally up-regulated in progressive CAD by DEA 
and fi nally obtained the CAD progression-associated genes: 
NID2, PGRMC1, TSC22D1, LOC340508, KIAA1211, and SMIM3. 
NID2, namely nidogen 2, encodes a cell-adhesion protein that 
binds to collagens I and IV, as well as laminin, potentially 
maintaining basement membrane structure. Previous studies 
had identifi ed SNP loci of NID2 associated with the pathogenesis 
of CAD, but the underlying mechanism remained unclear [36]. 
Through GSEA, we observed that NID2 was mainly involved in 
coronary vasculature development, microtubule anchoring at 
centrosome, microtubule anchoring at microtubule organizing 
center, positive regulation of interleukin-13 production, and 
regulation of monocyte differentiation pathways. Additionally, 
we identifi ed fi ve new key genes related to CAD progression. 
The regulatory pathways are similar to those of NID2, all of 
which can regulate monocyte differentiation according to 
GSEA. Monocytes participate in many pathophysiological 
pathways of CAD, such as lipid metabolism, coagulation, 
apoptosis, hypoxia, angiogenesis, and immune response, 
playing an important role in various stages of coronary heart 
disease [37]. Different subtypes of monocytes exert distinct 
effects, including pro-infl ammatory, anti-infl ammatory, 
pro-collagen deposition, and pro-angiogenesis. The dynamic 
conversion of their subpopulation ratios play a crucial role in 
the stability of atherosclerotic plaques [38]. Using immune 
infi ltration and correlation analysis, we found that SMIM3 
was signifi cantly positively correlated with the infi ltration 
of monocytes, suggesting that SMIM3 was involved in the 
monocyte infi ltration and differentiation, and potentially alter 
pro-infl ammatory monocyte phenotypes, leading to plaque 
instability, thereby promoting the rapid progression of CAD.

The results differ from those of previous studies further 
refl ects the promoting effect of platelets on the development 
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of CAD. The possible reasons are as follows. Specifi cally, 
our approach differs from that of Nührenberg, et al. [16] in 
identifying CAD progression-related genes. The advantage of 
the WGCNA algorithm [11] we applied is that the algorithms 
spread thousands of genes into several co-expression modules 
based on their expression patterns which provides a new 
system biology method based on microarray or RNA-seq 
data and effi ciently and accurately uncovers relationships 
between gene networks and sample traits, even for detecting 
low-abundance or weakly expressed genes. We would like to 
promote the prevention and screening of CAD progression.

Additionally, understanding the mol ecular mechanisms 
and regulatory pathways underlying rapid CAD progression 
may facilitate the development of small molecule targeted 
therapies to slow disease progression. In the cardiovascular 
fi eld, microRNAs are now recognized as key regulators of 
gene expression that control physiological and pathological 
adaptations of heart muscle to stress. Their high stability, 
resistance to degrading enzymes, and ease of detection 
make them reliable non-invasive biomarkers. Here, we aim 
to identify microRNAs related to SMIM3 through a ceRNA 
network. We have successfully identifi ed miRNAs associated 
with SMIM3 as well as lncRNAs that interact with them, 
which allows us to further elucidate potential SMIM3-related 
regulatory pathways. This approach will contribute to a more 
comprehensive understanding of the role of SMIM3 in CAD.

However, several limitations should be acknowledged  when 
explaining those results in our study. First, the datasets used 
for analysis and verifi cation are relatively small due to limited 
resources. A study with a large amount of data is needed to 
verify our results. Second, additional experiments need to be 
conducted to verify our analysis results. While peripheral blood 
gene profi ling provides a minimally invasive alternative for 
molecular assessment [39-41], it faces signifi cant limitations. 
Peripheral blood-derived gene expression profi les often fail to 
fully recapitulate localized molecular dynamics within coronary 
plaques due to the inherent heterogeneity of circulating blood 
cells and the unique plaque microenvironment. In contrast, 
direct tissue expression analysis, despite its invasive nature, 
offers superior resolution in characterizing plaque biology by 
capturing cell type-specifi c transcriptional signatures shaped 
by localized pathological processes, including infl ammatory 
cascades, hypoxia, and oxidative stress. The weak correlation 
between peripheral blood biomarkers and plaque pathology 
arises from confounding systemic factors, such as metabolic 
fl uctuations, comorbid conditions, and genetic variability, that 
independently modulate circulating transcriptional patterns. 
Conversely, tissue-based profi ling enables the discovery of 
plaque-specifi c therapeutic targets and instability-associated 
biomarkers that remain obscured in peripheral studies. 
Nevertheless, the clinical risks and logistical challenges of 
repetitively acquiring coronary plaque specimens restrict its 
utility in longitudinal or population-scale research. Therefore, 
striking a balance between these approaches is crucial, 
underscoring the identifi cation of noninvasive and effective 
molecular markers as a key direction for future research.

Conclusion

Our work identifi ed six key genes in the crucial module, 
NID2, PGRMC1, TSC22D1, LOC340508, KIAA1211, and SMIM3, 
as potential biomarkers for the diagnosis and treatment of 
progressive CAD, and SMIM3 expression in monocytes may 
contribute to regulate disease progression in CAD.
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